Compartir
Feeding the Machine: The Hidden Human Labor Powering A.I. (en Inglés)
Mark Graham
(Autor)
·
James Muldoon
(Autor)
·
Callum Cant
(Autor)
·
Bloomsbury Publishing
· Tapa Dura
Feeding the Machine: The Hidden Human Labor Powering A.I. (en Inglés) - Graham, Mark ; Cant, Callum ; Muldoon, James
Libro NuevoOrigen: UK
*
Envío: 20 a 27 días háb.
$ 73.969$ 51.778
* (Costos de importación incluídos en el precio)
Origen: Reino Unido
(Costos de importación incluídos en el precio)
Se enviará desde nuestra bodega entre el
Miércoles 19 de Febrero y el
Viernes 28 de Febrero.
Lo recibirás en cualquier lugar de Argentina entre 1 y 3 días hábiles luego del envío.
Reseña del libro "Feeding the Machine: The Hidden Human Labor Powering A.I. (en Inglés)"
For readers of Naomi Klein and Nicole Perlroth, a myth-dissolving exposé of what "artificial intelligence" really means, and a resounding argument for an equitable future of A.I. Silicon Valley has sold us the illusion that artificial intelligence is a frictionless technology that will bring wealth and prosperity to humanity. But hidden beneath this smooth surface lies the grim reality of a precarious global workforce of millions laboring under often appalling conditions to make A.I. possible. This book presents an urgent, riveting investigation of the intricate network that maintains this exploitative system, revealing the untold truth of A.I. Based on hundreds of interviews and thousands of hours of fieldwork over more than a decade, Feeding the Machine describes the lives of the workers deliberately concealed from view, and the power structures that determine their future. It gives voice to the people whom A.I. exploits, from accomplished writers and artists to the armies of data annotators, content moderators and warehouse workers, revealing how their dangerous, low-paid labor is connected to longer histories of gendered, racialized, and colonial exploitation. A.I. is an extraction machine that feeds off humanity's collective effort and intelligence, churning through ever-larger datasets to power its algorithms. This book is a call to arms that details what we need to do to fight for a more just digital future.